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1. Introduction

Much work has been done in the study of the numerics of multicomponent flows. An example of an early yet comprehen-
sive study of computational multiphase mechanics was given by Harlow and Amsden in Ref. [25], where they developed an
implicit finite differencing technique for extremely generalized multicomponent settings of both compressible and incom-
pressible flows, including phenomena ranging from bubble formation and cavitation effects, to the formation of atmospheric
precipitation and mixing jets. Subsequent and related work in multicomponent flows followed with, for example, the work
of Dukowicz in Ref. [18] for particle–fluid models of incompressible sprays, an approach extended by Faeth in Ref. [20] to
combustion flows and by Youngs in Ref. [57] to interfacial turbulent type flows.

Owing to some of these pioneering works, recent work has demonstrated a resurgence of interest in multicomponent
flows, approaches and numerical techniques. The importance of fluid-flows comprised of more than one phase, chemical
constituent, species or component is represented by a vast array of applications that range across a number of fields. For
example, multicomponent flows are essential for any flow demonstrating even rudimentary chemical kinetics; hence, for
all (nontrivial) ‘‘chemical fluids” [27,56]. Likewise biological flows often require phase separations, in order to resolve mem-
brane dynamics and interfacial behaviors in cells and cell organelles [47] and medical applications desire estimates in local
component-wise variations in blood serosity, which effect the viscosity and flow parameters involved with pulsatile hemo-
dynamics [9]. Likewise we find numerous examples of multicomponent flow applications in the atmospheric [26] and geo-
physical [53] sciences; as well as in acoustics [40] and astrophysics [43], just to mention a few.

Here we present a new multicomponent numerical scheme based on a mathematically well-posed [39] compressible
barotropic system with functional viscosity depending on both the density q and the mass fraction li of each fluid compo-
nent. It is well-known, both experimentally and theoretically, that viscosity has a functional relationship to the density and
specie type (for examples see the NIST thermophysical properties server). In addition, these types of mathematical models
(with functional transport coefficients) are well understood from the point of view of continuum dynamics, having been
extensively studied by Málek, Rajagopal and coworkers in Refs. [23,33,34]. It is further seen in Ref. [39] that the analytic
model used in this work a priori satisfies two essential entropy inequalities, much like the shallow water equations [8],
which serve as important tools for numerical analysis and implementation.

In this paper we implement a discontinuous Galerkin (DG) finite element method, employing piecewise polynomial
approximations which do not enforce or require any type of continuity between the interfaces of ‘‘neighboring” elements.
This particular implementation is primarily motivated by the works of Cockburn, Shu and coworkers (see Refs. [11–15])
and Feistauer, Dolejšı́ and coworkers (see Refs. [16,17,21,22]). We implement a generalized formulation that is designed
to accommodate an arbitrary choice of inviscid, viscous, and supplementary numerical fluxes. We use explicit time-discret-
ization methods as described in Ref. [12], which necessitate a conditional stability requirement; namely the time discreti-
zation must satisfy the CFL condition. Up to the CFL stability condition we find our method to be very robust and to deal
well with arbitrary numbers of fluid components of arbitrary type – up to the additional assumption that a barotropic pres-
sure law is applicable. On the domain boundary data we again strive to generalize our setting. We show two different imple-
mentations of boundary conditions, which demonstrate different solvency with respect to interior solutions, initial
conditions and phenomenolgically relevant contexts. In both cases arbitrary Robin type BCs may be set.

In Section 2 we give the general governing system of equations, the mathematical regularity, and the discrete formulation
of the problem. In Section 3 we demonstrate a general way of dealing with boundary conditions by way of the method of
characteristics, or alternatively, by way of setting arbitrary L1 data on the boundary. We provide an explicit formulation
of the characteristic technique and show the generalized behavior of these types of ‘‘characteristic” boundary conditions,
while subsequently discussing a number of alternative approaches. In Section 4 we implement two test cases with exact
solutions, which are restrictions placed on the multifluid barotropic governing equations, and show that they are exact
up to the possible exception of the boundary data. In Section 5 we show an example of a bifluid solution using the forward
Euler method. We then show the difference between boundary conditions by way of weak entropy solutions versus that of
characteristic boundary solutions. The next section, Section 6, is used to generalize the setting to ‘-fluid components and kth
order Runge–Kutta schemes, where the example of an ‘ ¼ 5 fluid is shown explicitly. Then in Section 7 we analyse the energy
consistency of the modelisation with respect to two entropy inequalities derived in Ref. [39]; one the classical entropy S and
the second a closely related entropy ~S discovered by Bresch and Desjardins (see Ref. [5,6]), where it turns out that the
numerical scheme from Section 2 satisfies both energy relations provided the CFL condition is satisfied. Finally in Section 8
we extend the results to include Fick’s diffusion law, where we inspect the exotic physical setting of a pressure wave trav-
eling through a gas comprised partially of polyynes, and discuss some applications.

2. The generalized ‘-fluid

We consider a one dimensional compressible barotropic ‘-fluid system governed by the following system of equations:
qt þ ðquÞx ¼ 0; ð1Þ
ðquÞt þ ðqu2Þx þ px � ðmuxÞx ¼ 0; ð2Þ
ðqliÞt þ ðquliÞx ¼ 0; ð3Þ
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with initial conditions,
qjt¼0 ¼ q0 > 0; qujt¼0 ¼ m0; ðqliÞjt¼0 ¼ qi;0:
The multicomponent barotropic pressure p ¼ pðql1; . . . ;ql‘Þ is chosen to satisfy,
p ¼
X‘
i¼1

ðqliÞ
ci ; ð4Þ
where
P‘

i¼1li ¼ 1. The mass conservation (1), momentum conservation (2), species conservation (3), and barotropic equa-
tion of state (4) describe the flow of a barotropic compressible viscous fluid defined for ðt; xÞ 2 Rþ � R. Here the density is
given as q, the velocity as u, the momentum by m ¼ qu, and the mass fraction of each component (chemical specie, phase ele-
ment, etc.) of the fluid is given by li, respectively, where ci > 1 corresponds to the empirically determined adiabatic expo-
nent uniquely characterizing each of the ‘ species. Furthermore, adopting the notation throughout the paper that qi ¼ qli,
the form of the viscosity functional m ¼ mðq1; . . . ;q‘Þ is fixed to satisfy
m ¼ w0ðpÞ
X‘
i¼1

qi@qi
p ð5Þ
for w0ðpÞ ¼ Cp�a given a 2 ð0;1Þ and C > 0 as empirically determined constants (see Ref. [33,34] and Section 7).
The mathematical well-posedness of such a system (in the ‘ ¼ 2 case) is given by the following theorem, which was pro-

ven by two of the authors in Ref. [39]:

Theorem 2.1. Given (4) and (5) satisfying the conditions in Ref. [39] with initial data ðq0;u0;l0Þ satisfying
0 < .ð0Þ 6 q0 6 .ð0Þ <1;

q0 2 _H1ðRÞ; u0 2 H1ðRÞ; l0 2 H1ðRÞ;Z
X
Eðq0;l0Þdx < þ1;

j@xl0j 6 Cq0;
with .ð0Þ;.ð0Þ; ~. positive constants and E0 the initial internal energy as derived in Ref. [39] and given from
Eðq;lÞ ¼ q@qEðq;lÞ � pðq;lÞ þ pð~qÞ;
then there exists a global strong solution to (1)–(3) on Rþ � R such that for every T > 0 we have
q 2 L1ð0; T; _H1ðRÞÞ; qt 2 L2ðð0; TÞ � RÞ;
u 2 L1ð0; T; H1ðRÞÞ \ L2ð0; T; H2ðRÞÞ; ut 2 L2ðð0; TÞ � RÞ;
lx 2 L1ð0; T; L1ðRÞÞ; lt 2 L1ð0; T; L2ðRÞÞ;
where _H1ðRÞ is the space consisting of all functions q for which,
Z
X
q2

x dx <1:
Furthermore, there exist positive constants .ðTÞ and .ðTÞ depending only on T, such that
0 < .ðTÞ 6 qðt; xÞ 6 .ðTÞ <1; 8ðt; xÞ 2 ð0; TÞ � R:
Additionally, when w00ðpÞ; @qqpðq;lÞ, and @qlpðq;lÞ are each locally bounded then this solution is unique.

Now notice that for an ‘-fluid written with respect to conservation variables, the state vector U can be written as the
transpose of the 1�m row vector
U ¼ ðq;qu;q1; . . .q‘Þ
T
;

where m ¼ ‘þ 2 characterizes the degrees of freedom of our chosen system of equations. Note that we make this choice of a
state vector for the sake of flexibility of representation and implementation (see, for example, Section 8), where the strict
degrees of freedom of the system (1)–(3), due to the multiplicity of (1) in the conservation form of (3), is just ‘þ 1. Never-
theless, consistent with our choice of an ð‘þ 2Þ � 1 state vector U, we obtain that the m� 1 inviscid flux vector f satisfies
f ðUÞ ¼ ðqu;qu2 þ p;q1u; . . . ;q‘uÞ
T
;

while the m� 1 viscous flux g is given by
gðU;UxÞ ¼ ð0; mux;0; . . . ; 0ÞT :
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In this notation (1)–(3) can be expressed as
Ut þ f x ¼ gx; ð6Þ
where the notation ð�Þi corresponds to component-wise derivations with respect to the variable i.
The Jacobian matrix of the inviscid flux JUf ðUÞ ¼ CðUÞ can be written as the m�m matrix:
ð7Þ
where I‘ is the ‘� ‘ identity matrix. An important feature of the barotropic pressure law (4) is that it is not a homogeneous
function in qi, and thus the Jacobian C is not formulated to satisfy CU ¼ f . This contrasts, for example, with the compressible
Navier–Stokes equations when using the monofluid form of the ideal gas law p ¼ Rq# (see Ref. [22]). It should be noted that
some numerical fluxes and schemes are designed or derived by specifically exploiting this homogeneity with respect to the
Jacobian matrix of the flux function (for example, see the Vijayasundaram flux as used in Ref. [21,22]). Nevertheless, our
numerical fluxes will be defined independently of the homogeneity property of the corresponding map, where C simply sat-
isfies f x ¼ CUx.

For the viscous flux g we define the m�m matrix,
ð8Þ
where here and below the 0’s are zero matrices of the appropriate sizes. Clearly then (6) satisfies
Ut þ CUx � ðKUxÞx ¼ 0: ð9Þ
Further let us introduce the auxiliary function R such that we are concerned with solving the coupled system:
Ut þ CUx � ðKRÞx ¼ 0;
R� Ux ¼ 0:

ð10Þ
The above equations comprise a first-order system which can be effectively discretized using the DG method.
Consider the following discretization scheme motivated by Ref. [22] (and illustrated in the one dimensional case in Fig. 1).

Take an open X � R with boundary @X ¼ C, given T > 0 such that QT ¼ ðð0; TÞ �XÞ for X̂ the closure of X. Let T h denote the
partition of the closure X̂, such that taking X̂ ¼ ½a; b� provides the partition
a ¼ x0 < x1 < � � � < xne ¼ b
comprised of elements Gi ¼ ðxi�1; xiÞ 2 T h such that T h ¼ fG1;G2; . . . ;Gneg. The mesh diameter h is given by
h ¼ supG2T h

ðxi � xi�1Þ such that a discrete approximation to X is given by the set Xh ¼ [iGi n fa; bg. Each element of the par-
tition has a boundary set given by @Gi ¼ fxi�1; xig, where elements sharing a boundary point @Gi \ @Gj–; are characterized as
neighbors and generate the set Kij ¼ @Gi \ @Gj of interfaces between neighboring elements. The boundary @X ¼ fa; bg is char-
acterized in the mesh as @X ¼ fx0; xneg and indexed by elements Bj 2 @X such that X̂ ¼ T h [Kij [ @X. Now for
I � Zþ ¼ f1;2; . . .g define the indexing set rðiÞ ¼ fj 2 I : Gj is a neighbor of Gig, and for IB � Z� ¼ f�1;�2; . . .g define
sðiÞ ¼ fj 2 IB : Gi contains Bjg. Then for Si ¼ rðiÞ [ sðiÞ, we have @Gi ¼ [j2SðiÞKij and @Gi \ @X ¼ [j2sðiÞKij.

We define the broken Sobolev space over the partition T h as
Wk;2ðXh; T hÞ ¼ fv : v jGi
2Wk;2ðGiÞ 8Gi 2 T hg:
Fig. 1. The discretization of X, distinguishing nodes, elements and neighbors, with boundary @X ¼ fa; bg.
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Further, approximate solutions to (1)–(3) will exist in the space of discontinuous piecewise polynomial functions over X re-
stricted to T h, given as
Sd
hðXh; T hÞ ¼ fv : v jGi

2 PdðGiÞ 8Gi 2 T hg
for PdðGiÞ the space of degree 6 d polynomials on Gi.
Choosing a degree d set of polynomial basis functions Nl 2 PdðGiÞ for l ¼ 0; . . . ; d we can denote an approximation to the

state vector at the time t over Xh, by
Uhðt; xÞ ¼
Xd

l¼0

U i
lðtÞN

i
lðxÞ; 8x 2 Gi;
where the Ni
l’s are the finite element shape functions, and the U i

l’s correspond to the nodal unknowns. Likewise the test func-
tions uh;#h 2W2;2ðXh; T hÞ are characterized by
uhðxÞ ¼
Xd

l¼0

ui
lN

i
lðxÞ and #hðxÞ ¼

Xd

l¼0

#i
lN

i
lðxÞ 8x 2 Gi
for ui
l and #i

l the nodal values of the test function in each Gi.
Letting U be a classical solution to (10) and multiplying through by test functions uh and #h and integrating elementwise

by parts yields:
d
dt

Z
Gi

U � uhdxþ
Z
Gi

ðf � uhÞxdx�
Z
Gi

f � uh
x dx�

Z
Gi

gx � uhdx ¼ 0;
Z
Gi

R � #hdx�
Z
Gi

ðU � #hÞxdxþ
Z
Gi

U � #h
x dx ¼ 0: ð11Þ
Let ujKij
and ujKji

denote the values of u on Kij considered from the interior and the exterior of Gi, respectively. It should be
noted that for Kij 2 C, the restricted functions uhjKji are determined up to a choice of boundary condition, which we will dis-
cuss in more detail in Section 3. Then we approximate the first term of (11) by,
d
dt

Z
Gi

Uh � uhdx � d
dt

Z
Gi

U � uhdx; ð12Þ
the second term in (11) by the inviscid numerical flux Ui,
~UiðUhjKij
;UhjKji

;uhÞ ¼
X
j2SðiÞ

Z
Kij

UðUhjKij
;UhjKji

;nijÞ � uhjKij
dK �

X
j2SðiÞ

Z
Kij

f � nijuhjKij
dK ð13Þ
for nij the unit outward pointing normal; and the third term on the left in (11) by,
HiðUh;uhÞ ¼
Z
Gi

f h � ðuhÞxdx � �
Z
Gi

f � ðuhÞxdx: ð14Þ
The viscous term in (11) integrates by parts to give:
Z
Gi

gx � uhdx ¼
Z
Gi

ðg � uhÞxdx�
Z
Gi

g � uh
x dx ¼

Z
Gi

ðKR � uhÞxdx�
Z
Gi

KR � uh
x dx: ð15Þ
We approximate the first term on the right in (15) using a generalized viscous flux Ĝ (see Ref. [1] for a review of choices in
the DG framework). We write here for the general viscous flux
GiðRh;Uh;uhÞ ¼
X
j2SðiÞ

Z
Kij

ĜðRhjKij
;RhjKji

;UhjKij
;UhjKji

;nijÞ � uhjKij
dK �

X
j2SðiÞ

Z
Kij

g � nijuhjKij
dK; ð16Þ
while the second term is approximated by:
N iðRh;Uh;uhÞ ¼
Z
Gi

gh � ðuhÞxdx �
Z
Gi

g � uh
x dx: ð17Þ
Finally for the second equation in (11) we expand it such that the approximate solution satisfies:
QiðÛ;Rh;Uh;#h;#
h
xÞ ¼

Z
Gi

Rh � #hdxþ
Z
Gi

Uh � #h
x dx�

X
j2SðiÞ

Z
Kij

ÛðUhjKij
;UhjKji

;#hjKij
ÞdK; ð18Þ
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where,
U iðUh;#hÞ ¼
X
j2SðiÞ

Z
Kij

ÛðUhjKij
;UhjKji

;#hjKij
ÞdK �

X
j2SðiÞ

Z
Kij

U � nij#hjKij
dK
given that Û is the generalized flux term associated with the discontinuous Galerkin method determined up to a congeries of
options (please see Ref. [1] for a unified analysis), and using the approximate relations:
Z

Gi

Rh � #hdx �
Z
Gi

R � #hdx and
Z
Gi

Uh � #h
x dx �

Z
Gi

U � #h
x dx:
We note that these choices of approximations and fluxes define the values of Rh on each element in terms of the values of Uh

on that element and adjacent elements. As we shall see later, this indicates that with an explicit time-discretization scheme,
computing Rh is a completely local procedure.

Combining (13), (14), (16)–(18) and setting,
X ¼
X
Gi2T h

X i
given the inner product
ðan
h;bhÞXG

¼
X
Gi2T h

Z
Gi

an
h � bhdx;
we define an approximate solution to (11) as functions Uh and Rh for all t 2 ð0; TÞ satisfying:
ð1Þ Uh 2 C1ð½0; T�; Sd
hÞ; Rh 2 Sd

h;

ð2Þ d
dt
ðUh;uhÞXG

þ ~UðUh;uhÞ �HðUh;uhÞ � GðRh;Uh;uhÞ þN ðRh;Uh;uhÞ ¼ 0;

ð3Þ QðÛ;Rh;Uh;#h;#
h
xÞ ¼ 0;

ð4Þ Uhð0Þ ¼ U0:

ð19Þ
We find below that up to a (possibly arbitrary) choice of boundary data, these solutions are quite well-behaved, extremely
robust for arbitrary choice of ‘ fluids (we show ‘ ¼ 1;2 and 5 here, and have tested up to ‘ ¼ 11 elsewhere) and readily ex-
tended to more complicated systems (e.g. Section 8). The results presented in this paper utilize piecewise linear basis func-
tions, but we have tested quadratic basis functions in our code as well.
3. Towards a generalized boundary treatment

Specifying arbitrary boundary data with respect to our approximate solution (19) is a delicate issue which requires a
nuanced understanding of barotropic solutions and the mathematical techniques used to pose them. That is, we wish to
determine the nature of an arbitrary boundary state U j@X in a way which is well-posed with respect to the system (1)–
(3); which is to say, in such a way that the uniqueness of the solution is maintained.

However, practically speaking, recovering boundary data of an arbitrary nature on @X poses well-established difficulties
with respect to the a priori estimates established in Ref. [39], which serve as the cornerstone to the existence and uniqueness
result stated in Theorem 2.1. That is, recovering the a priori estimates on the solution is reduced, in the first step, to recov-
ering two entropy inequalities (see Section 7 for explicit forms) which serve as positive definite functionals over ð0; TÞ �X.
However, when explicit boundary data is given, these inequalities acquire the addition of the following two unsigned bound-
ary components (i.e. by Stokes’ theorem the integrals yield boundary data that demonstrates no fixed sign for all time),
respectively (see Ref. [39] for the explicit calculation):
Z

X
ðqu3Þxdx and

Z
X
ðquðuþ q�1wxÞ

2Þxdx
having the consequence of rendering the well-posedness of a formulation which spans any type of boundary data difficult to
establish. Instead we offer a number of pragmatic approximate approaches that generalize the solution up to important
restrictions, and then discuss some alternative approaches that are aimed at certain specialized types of settings. First we
review some known results.

It has been shown by Strikwerda in Ref. [51], and Gustaf’sson and Sundstrom in Ref. [24] that incompletely parabolic sys-
tems, such as the shallow water equations and the full Navier–Stokes equations, may be well-posed with respect to a broad
set of initial-boundary data. These works additionally demonstrate the appropriate number of boundary conditions expected
on incompletely parabolic systems, which differ from completely hyperbolic systems such as Euler’s equations. As the
barotropic system (1) and (2) maintains a formal equivalence to the viscous shallow water equations (see, for example,
Ref. [8,38]), we might expect (1) and (2) to behave as an incompletely parabolic system due to Ref. [24]. However, the
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dependencies of the pressure p and viscosity m on the mass fractions make showing this nontrivial and require a careful anal-
ysis of either incompletely parabolic systems [51], or hyperbolic–parabolic systems [29].

The implementation of both incompletely parabolic and hyperbolic systems often rely upon the so-called ‘‘characteristic
treatment.” In these systems we use characteristic directions to extrapolate values of the system variables on the boundary,
while the others become constrained by a set of characteristic relations (see Ref. [30] for the hyperbolic regime). These types
of treatments have been extended to treat the full Navier–Stokes equations [44,46], the viscous shallow water equations
[31], and multifluid systems [52].

We want to consider what we will refer to here and below as characteristic type boundary solutions, which we view as a
reduced hyperbolic system (as presented in Ref. [22,24]). We illustrate the situation for a simple one dimensional case, but
our analysis easily extends to the multidimensional case. To begin, suppose we have the domain ð0;1Þ in which to specify a
characteristic boundary condition at the boundary point x ¼ 0 and time t ¼ 0. Note that other one dimensional cases can
easily be transformed to such a setting with a change of coordinates. We linearize our solution at x ¼ 0 with respect to a
reference solution ~q, which for our purposes represents the numerical solution at x ¼ 0 taken at a previous timestep. As
an approximation, we neglect the viscous terms, resulting in:
qt þ Cð~qÞqx ¼ 0; ð20Þ
where q � U is a linearized approximation to the exact solution. Note that this arrives with a linear hyperbolic system. We
consider the initial-boundary value problem in the set ð0;1Þ � ð0;1Þ equipped with the initial condition
qð0; xÞ ¼ ~q; for x 2 ð0;1Þ; ð21Þ
and the boundary condition
qðt; 0Þ ¼ ~qbðtÞ: for t 2 ð0;1Þ; ð22Þ
Our goal is to choose the boundary condition ~qbðtÞ in such a way that the initial-boundary value problem is well-posed. To
continue, we decompose into characteristic directions. That is, note that since C is diagonalizable we have that Chcj ¼ 1jcj,
where the characteristic directions cj are the eigenvectors of C associated to eigenvalues 1j (see Section 4 for an example).
Then we can formulate the solution in the form
qðt; xÞ ¼
Xm

j¼1

kjðt; xÞcj; ð23Þ
where the initial and boundary data, respectively, satisfy
~q ¼
Xm

j¼1

ajcj; and ~qb ¼
Xm

j¼1

bjcj: ð24Þ
It then follows (from Ref. [22, Chapter 3], for example) that (20) can be written as j initial-boundary value scalar problems:
kj;t þ 1jkj;x ¼ 0 in ð0;1Þ� ð0;1Þ;
kjðx;0Þ ¼ aj; for x 2 ð0;1Þ;
kjð0; tÞ ¼ bj for t 2 ð0;1Þ;

ð25Þ
where here and below the comma notation kj;i, indicates the derivative with respect to variable i. The scalar problems (25)
may be solved via the method of characteristics, from which we obtain the solution,
kjðx; tÞ ¼
aj; for x� t1j < 0;
bj; for x� t1j > 0;

(
ð26Þ
which provides an explicit form to (23). From (26), we obtain the following conditions for the boundary data.

� If 1j > 0, then necessarily bj ¼ aj. This is obtained by extrapolating the solution of kj to the boundary x ¼ 0.
� If 1j ¼ 0, then bj may be freely chosen. However, in some situations it may be useful to choose bj ¼ aj for this case, such as

an impermeable solid wall.
� If 1j < 0, then bj may be freely chosen.

Note that once we have selected well-posed characteristic boundary conditions, we utilize the transformation
~qb ¼ Vðb1;b2;b3; . . . ;bmÞ
T ð27Þ
to determine the consistent boundary conditions for the conservation variables (please see the appendix for definitions). It
turns out that for (1)–(5) we can reduce this method to that of the essential choices listed in Table 1. This corresponds with
what we know of hyperbolic systems as shown in Refs. [22,30], with respect to the number of free and fixed conditions on
the boundaries. In Table 1 we also include a number of physically motivated restrictions which should be taken into account
when selecting our boundary conditions.



Table 1
Choice of boundary conditions.

Boundary type Restrictions Free Fixed

Subsonic Inlet b2; . . . ;bm b1

u � n > �c u � n < 0 l1 þ � � � þ l‘ ¼ 1;q > 0
Supersonic Inlet and the appropriate b1; . . . ;bm , None
u � n 6 �c u � n < 0 supplementary
Subsonic Outlet conditions associated b2 b1; b3;

u � n < c u � n > 0 with a choice of . . . ; bm

Supersonic Outlet boundary data, None b1,
u � n P c u � n > 0 including: . . . ; bm

Membrane Wall q; u;li;p; m;m;qli , etc. b2 b1; b3;

u � n ¼ 0 u � n ¼ 0 � � � ; bm

Membrane Osmotic b2; . . . ;bm b1

u � n ¼ 0 u � n ¼ 0
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In addition to employing these ‘‘characteristic” solutions, we notice that the form of (20) satisfies the weak entropy solu-
tions of Ref. [2,12,35] for hyperbolic systems. However, as we show in Section 4, even though these two types of solutions are
both consistent, they do not display equivalent numerical behavior.

Nevertheless these two choices of boundary data, the characteristic and weak entropy solutions, are not ideal since (1)–
(3) is not a hyperbolic system. We may alternatively consider the route of positing boundary data by a simple extension of
the results of Zlotnik (see Ref. [59]) to see that the barotropic system is parabolic in the sense of Petrovskii upon addition of
the ‘‘quasihydrodynamic” or ‘‘quasigasdynamic” auxilliary function w (see Ref. [19,58]) on @X.

More generally, there exists a large back catalogue of results on compressible barotropic systems, many of which imple-
ment differing initial-boundary data, and some of which utilize fairly exotic conditions on the boundary. For example, for
barotropic inflow problems we can refer to both Ref. [28,37], where in both cases results from Ref. [39] are required and
additional extensions are needed to move into the multiphase regime. Likewise solutions exist for free boundary barotropic
problems [49], surface tension type boundaries [50], Navier boundary type conditions [7], and various Dirichlet type prob-
lems near vacuum states [10,32,41]; however, again, all of these results are only strictly satisfied for monofluidic systems,
and thus require subtle analysis in order to extend them to the full multifluid regime. In many cases however, such as in
Ref. [59], the extension is relatively straightforward.
4. Numerical test cases

We inspect two analytic test cases to verify the accuracy of the numerical method presented in Sections 2 and 3. In both
cases we solve a monofluid restriction of (1)–(3) from the bifluid case (‘ ¼ 2), with l1 ¼ 1 and l2 ¼ 0 in l ¼ 1 spatial
dimension.

To begin, we specify the DG formulation in the bifluid case. First we define the three vectors U ¼ ðq;qu;q1;q2Þ
T
; f ðUÞ ¼

ðqu;qu2 þ p;q1u;q2uÞT and gðU;UxÞ ¼ ð0; mux;0; 0ÞT such that (1)–(3) are expressed as
Ut þ f x ¼ gx; ð28Þ
whereby setting ‘ ¼ 2 in (7) and using (8) it then follows that
Ut þ CUx ¼ ðKUxÞx: ð29Þ
We can thus write a weak form of (1)–(3) in the same way as (11).
To solve the system we must first specify the inviscid flux U. We test for two choices here. First we implement the local

Lax–Friedrich’s flux UlLF which satisfies
Z
Kij

UlLF � uhdK ¼ 1
2

Z
Kij

ðf ðUhÞjKij
þ f ðUhÞjKji

Þ � nijuhjKij
dK� 1

2

Z
Kij

ðSpecrðCÞÞððUhÞjKij
� ðUhÞjKji

Þ � nijuhjKij
dK
for nij the outward unit normal and SpecrðCÞ the spectral radius of C.
As our second choice of inviscid flux we implement a standard approximate Riemann solver, with flux UR satisfying:
Z

Kij

UR � uhdK ¼ 1
2

Z
Kij

f ðUhÞjKij
þ ðf ðUhÞjKji

Þ � nijuhjKij
dK� 1

2

Z
Kij

ðVðfUhgÞjKðfUhgÞjV�1ðfUhgÞÞ � nijuhjKij
dK;
where V and V�1 are found from the eigendecomposition given in the appendix, K is given by the diagonal matrix of eigen-
values diagð1iÞ – as also enumerated in the appendix – and the average is given by
fUhg ¼
1
2

UhjKij
þ UhjKji

� �
:
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Next we specify the viscous flux G. Here we use a formulation similar to that presented in Ref. [4], but we adapt it to include
the functional dependencies present in the viscosity. We choose
Z

Kij

Ĝb � nijuhdK ¼ 1
2

Z
Kij

ððKRhÞjKij
þ ðKRhÞjKji

Þ � nijuhjKij
dK:
For the numerical flux Û we use the Bassi–Rebay form, as shown in Ref. [1,4], which gives
Z
Kij

ÛBRðUh;#hÞdK ¼
1
2

Z
Kij

ððUhÞjKij
þ ðUhÞjKji

Þ � nij#hjKij
dK:
Now we discretize in time, denoting a partition of [0,T] by
0 ¼ t0 < t1 < � � � < tT ¼ T
for a timestep given as Dtn ¼ tnþ1 � tn, and implement the forward Euler scheme:
Uh;t �
Unþ1

h � Un
h

Dtn
along with a slope limiting scheme in the conservation variables ðq;quÞ, where the van Leer and Osher MUSCL schemes (as
shown in Ref. [42,54,55]) have been adopted in this paper.

Now we solve explicitly for (19). In particular, we show an explicit scheme using the Riemann flux, which is formulated to
read: for every n P 0 find Unþ1

h such that
ð1Þ Un
h 2 Sd

h; Rn
h 2 Sd

h;

ð2Þ Unþ1
h � Un

h

Dtn ;uh

 !
XG

þ ~URðUn
h;uhÞ �HðUn

h;uhÞ

� GbðRn
h;U

n
h;uhÞ þN ðRn

h;U
n
h;uhÞ ¼ 0;

ð3Þ QðÛBR;R
n
h;U

n
h;#h;#

h
xÞ ¼ 0;

ð4Þ Uh
0 ¼ Uhð0Þ:

ð30Þ
The above formulation lends itself naturally to a staggered scheme. First, given Un
h one solves step 3 for Rn

h. This amounts to a
simple, fast, and trivially parallelizable computation as the L2-projection matrix to be inverted is block-diagonal, with each
block corresponding to an individual element. Second, given Rn

h, one solves step 2 for Unþ1
h . This similarly is a trivial compu-

tation as the mass matrix to be inverted is block-diagonal. In fact, with the choice of an orthogonal polynomial basis on each
element, the L2-projection and mass matrices become diagonal.

We inspect the first of two numerical test cases. Consider the monofluid steady state case of (1)–(3), by setting the initial
data to q0 ¼ l�1

1;0 ¼ u0 ¼ ci ¼ 1 and l2;0 ¼ 0. Clearly here the pressure reduces to unity p0 ¼ 1 and the viscosity to a constant
m0 ¼ C0. Next we set the periodic boundary condition
Un
hðaþ; tÞ ¼ Un

hðb
þ
; tÞ; Un

hða�; tÞ ¼ Un
hðb

�
; tÞ:
The exact solution shows constant solutions in the primitive variables. Our numerical simulations for (30) using both
approximate Riemann and Lax–Friedrich’s inviscid fluxes have shown that the L1 numerical error in the conservation vari-
ables is of the order of machine precision, showing no fluctuation about the steady state in time.

For the second of our test cases, we consider the monofluidic restriction of (1)–(3) given by taking l1;0 ¼ 1;l2;0 ¼ 0 and
ci ¼ 1 with the additional relations:
p ¼ q ¼ u�1; and m ¼ q:
Solving this system immediately yields
q�1 þ q� qq�1
x ¼ �C
for C 2 R, which leads to the ordinary differential equation
ux ¼ u2 þ 1� Cu: ð31Þ
Setting C ¼ 0 and noting that the solution is independent of time, we solve the ODE yielding: u ¼ tan x. Setting the initial data
to
q0 ¼ ðtan xÞ�1
; m0 ¼ 1; and ðql1Þ0 ¼ q0;
with the Dirichlet boundary data provided in the weak entropy sense of Section 3 via,
qb ¼ 1=ub; mb ¼ 1 and ðql1Þb ¼ qb;



Fig. 2. The two graphs show the solution to (31) in terms of the linear Riemann flux and the Osher limiter, denoted ur and qr , versus the exact solution.
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we inspect the solution over the domain ½a; b�, with a ¼ 0:5 and b ¼ 0:7: Note that we enforce the weak entropy boundary
conditions by setting Un

hjKji
¼ fqbðtnÞ;mbðtnÞ;qbðtnÞ;0g. Here we compare the exact solution to the solution obtained using

the Riemann flux with the Osher slope limiter (denoted qr in Fig. 2).
In Fig. 2 we plot the error of the numerical solution corresponding to a mesh size of h ¼ 2� 10�4 and a timestep size of

h=30, where it is clear that the relative error over fifty timesteps is of the order of magnitude of the resolution of the mesh.
The relative error is zero across the solution at the first timestep, as expected, and remains nearly constant in the interior of
the domain in both cases, while the weak entropy implementation displays fluctuations in time of the order of h. These
boundary fluctuations are neither monotonic nor generally increasing, but show complicated temporal perturbations at
the weak entropy boundary points and are seen to weakly propagate into the interior as a function of the timestep. We have
obtained similar behavior for the choices of a local Lax–Friedrich’s inviscid flux and van Leer’s slope limiter. Further, numer-
ical experiments have revealed that the L2-error of the solution at a fixed time T scales like OðhÞ for the choice of a forward
Euler scheme, a timestep size of Dt ¼ h=30, and piecewise linear basis functions. For a general polynomial order d and an
explicit time integration scheme of order one (see Section 6 for extensions), we find the L2-error of the solution at a fixed
time T scales like Oðhdþ1 þ DtÞ, as expected, provided the CFL condition (e.g. for viscous flows, we have eC2h2

=maxðm;1ÞP
Dt with CFL constant eC2 2 ð0;1Þ) is satisfied.

5. Example: 2-fluid with chemical inlet

Let us show a simple application of the system outlined in Sections 2 and 3 evaluated over two distinct constituents. Con-
sider the bifluid system,
qt þ ðquÞx ¼ 0; ð32Þ
ðquÞt þ ðqu2Þx þ px � ðmuxÞx ¼ 0; ð33Þ
ðqliÞt þ ðquliÞx ¼ 0; ð34Þ
with initial conditions:
qjt¼0 ¼ q0 > 0; mjt¼0 ¼ m0 and ljt¼0 ¼ l0:
The pressure is given by p ¼ qc1
1 þ qc2

2 and the viscosity by m ¼ w0ðc1q
c1
1 þ c2q

c2
2 Þ for w0 ¼ Cp�a and a 2 ð0;1Þ with C > 0.

Now as in Section 4 we easily recover the form
Ut þ CUx ¼ ðKUxÞx; ð35Þ
which integrates to (11). Again we solve for our system in a form equivalent to (19). We employ the local Lax–Friedrich’s
inviscid flux UlLF , the Bassi–Rebay numerical flux ÛBR, the usual viscous flux Ĝb, and the van Leer slope limiter.

All that remains is determining the boundary states Un
hj@X

. We begin by considering the case of characteristic boundary
conditions, and assume that at the boundary x ¼ a we have a subsonic inlet u � n < 0. In our determination of characteristic
boundary conditions, we linearize about the state Un

hjKij
to arrive at an expression for the boundary state Un

hjKji
at timestep tn.

Then, from Table 1, we see that bn
1 is fixed by
bn
1 ¼ qnðaþÞ=2; where qnðaþÞ ¼ lim

x!0þ
qnðaþ xÞ: ð36Þ
Now, suppose we want a chemical inlet such that the first chemical constituent l1 is characterized by an influx condition
ln

1ða�Þ ¼ C where similarly,
lnða�Þ ¼ lim
x!0þ

lnða� xÞ:



Fig. 3. The left plot shows miscible species at t ¼ 12 given the characteristic chemical inlet conditions from (37) with C ¼ 0:9 and on the boundary a ¼ 0,
with the first-order transmissive conditions on b ¼ xne (see Fig. 1). The right plot shows the same solution using the weak entropy formulation. Here we
have a miscible solution of methanol and water at # = 500 K and initial q0 ¼ 5; u0 ¼ 0, and l1;0 ¼ l2;0 ¼ 0:5.

Fig. 4. Here we show the difference between the first chemical constituent of the weak entropy l1;w and characteristic l1;c solutions shown in Fig. 3, where
n ¼ l1;w � l1;c . In this figure, for emphasis, we show only the reduced spatial interval ð0;9Þ.
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In order to maintain the consistency of our system, we additionally need that ln
2ða�Þ ¼ 1� C and qnða�Þ ¼ � > 0. For ‘ ¼ 2,

we solve (27) with the constraint in (36) to obtain:
bn
2 ¼ �qnðaþÞ=2� bn

3 þ �; bn
3 ¼ bn

4n
nðaþÞ; bn

4 ¼ �ðln
1ðaþÞ � CÞ=c2

nðaþÞ and ðquÞnða�Þ ¼ bn
1 þ bn

2 þ bn
3; ð37Þ
where nnðaþÞ ¼ @q1
pnðaþÞ � @q2

pnðaþÞ; cnðaþÞ denotes the speed of sound at timestep tn on the boundary as defined in the
appendix. Finally, at the other boundary point x ¼ b we set a transmissive characteristic boundary condition.

The behavior of such a ‘‘chemical inlet” is shown in Fig. 3 where we have utilized a mesh size of h ¼ 0:54 and a timestep of
h=30. Here we set � ¼ q0ðaþÞ. By comparison the weak entropy solutions discussed in Section 3 to (32)–(34) are also well-
posed for an arbitrary collection of L1ðð0; TÞ � @XÞ boundary data. So, in contrast to decomposing the solution into its char-
acteristic directions, we may simply assign ln

1ða�Þ ¼ C;ln
2ða�Þ ¼ 1� C;qnða�Þ ¼ � and the lag velocity condition

unða�Þ ¼ un�1ðaþÞ for every timestep to obtain the weak entropy solution.
Comparing the behavior of the weak entropy solution of the mass fraction of the first constituent l1;w in Fig. 3 to the char-

acteristic solution of the mass fraction of the first constituent l1;c yields Fig. 4. Notice that the two boundary solutions do not
demonstrate the same numerical behavior. In particular, the weak entropy l1 grows more rapidly at the boundary; while the
dynamically coupled characteristic solution adapts to the influx of specie/density by producing a velocity outflow, which
effectively reduces the ‘‘chemical influx” as a function of time.

In practice it is often physically meaningful to ascribe more boundary data than the free characteristic directions associ-
ated to the free b’s can consistently control. For example a closely related case to the chemical inlet example given above, is
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the subsonic outlet ub � n > 0. In cases such as these, where only one characteristic direction is free, weak entropy solutions
are essential in order to even characterize such mixing at the boundary interface (such a case emerges of particular interest,
for example, when interspecies diffusion occurs in the mass transport as shown in Section 8). Heuristically we may say that
characteristic solutions demonstrate a relatively weaker forcing on @X but are more restrictive in terms of degrees of free-
dom, while the weak entropy boundary solutions display a greater flexibility of representation by way of establishing stron-
ger forcing on @X.

6. Example: kth order in time ‘-fluid

We wish to generalize the example in Section 5 to ‘-fluid components and a kth order in time Runge–Kutta time discret-
ization. Let us start with an ‘ ¼ 5 system, which then can be easily generalized. Consider
Fig. 5.
conditi
l4 ¼ 0:
qt þ ðquÞx ¼ 0; ð38Þ
ðquÞt þ ðqu2Þx þ px � ðmuxÞx ¼ 0; ð39Þ
ðqliÞt þ ðquliÞx ¼ 0; ð40Þ
with initial conditions,
qjt¼0 ¼ q0 > 0; qujt¼0 ¼ m0; and ðqliÞjt¼0 ¼ qi;0
given the pressure
p ¼ qc1
1 þ qc2

2 þ qc3
3 þ qc4

4 þ qc5
5 ð41Þ
and viscosity
m ¼ w0ðq1@q1
pþ q2@q2

pþ q3@q3
pþ q4@q4

pþ q5@q5
pÞ: ð42Þ
We take the three vectors U ¼ ðq;qu;q1;q2;q3;q4;q5Þ
T
; f ðUÞ ¼ ðqu;qu2 þ p;q1u;q2u;q3u;q4u;q5uÞT , and gðU;UxÞ ¼

ð0; mux;0;0;0;0; 0ÞT , such that again we arrive with
Ut þ CUx � ðKUxÞx ¼ 0; ð43Þ
which is easily approximated by the numerical scheme given in (19).
We generalize to higher order time discretization. That is, let us rewrite (19) as a system of ordinary differential

equations,
d
dt

Uh ¼ LhðUhÞ:
We can solve this system using an explicit Runge–Kutta method. Specifically, we use the strong-stability preserving Runge–
Kutta methods presented in Ref. [12]. This method follows for any ‘-fluid of the form (1)–(5) of Runge–Kutta order k.

The behavior of this system is shown in Fig. 5, where we have set the simple periodic boundary condition,
Un
hðaþ; tÞ ¼ Un

hðb
þ
; tÞ; Un

hða�; tÞ ¼ Un
hðb

�
; tÞ:
The numerical solution shown was obtained using a mesh size of h ¼ 0:36, a timestep of h=30, the local Lax–Friedrich’s flux,
van Leer’s slope limiter, and the Runge–Kutta method presented in Ref. [12] with k ¼ 2. It is worth noting that the
Here we show the first and last timesteps of the mass fractions at # = 293 K using periodic boundary conditions with Runge–Kutta order k ¼ 2. Initial
ons set q ¼ 5þ 20e�ðx�10Þ2=8 þ 20e�ðx�30Þ2=8 and u ¼ sinð6px=xneÞ, with l1 ¼ 0:07þ 0:3e�ðx�27:5Þ2=12;l2 ¼ 0:1þ 0:3e�ðx�10:5Þ2=8;l3 ¼ 0:06þ0:3e�ðx�22:5Þ2=8;

05þ 0:3e�ðx�30:5Þ2=10 and solvent l5 ¼ 1�
P4

‘¼1li .
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composition of this mixture does not tend towards homogeneous equilibrium, since there is both no interspecies diffusion
(see Section 8) and the species are not ‘‘chemically miscible” (in that they do not mix in all proportions). Nevertheless there
is significant mixing from the state of the initial conditions, and it can be seen that the fluid is more homogenized, relatively
speaking, at time t ¼ 10 that it was in the initial state. Most importantly, this scheme now immediately extends to an arbi-
trary ‘-fluid.

7. Energy consistency of scheme

In Ref. [39] it is shown that any solution for which Theorem 2.1 holds should satisfy two closely related entropy inequal-
ities. The first, a classical integral inequality taking the form
Fig. 6.
chosen
1
2

d
dt

Z
R

qu2 þ 2E
� �

dxþ
Z

R

mjuxj2dx 6 0 ð44Þ
and the second owing to Bresch and Desjardins (see Ref. [5,8]), as
1
2

d
dt

Z
R

qjuþ q�1wxj
2 þ 2E

n o
dxþ

Z
R

q�1w0jpxj
2dx 6 0; ð45Þ
where the internal energy E ¼ Eðq1; . . . ;q‘Þ is specified as:
E ¼
X‘
i¼1

qci
i

ci � 1
:

Entropy consistent numerical schemes are often formulated in the literature in order to explicitly enforce entropy inequal-
ities such as (44) and (45) over all of QT (viz. Ref. [3,48]). For example enforcing (44) may be done by utilizing a change of
variables of the conservation variable form of the state vector U, into the so-called entropy variable form W , which is
achieved by writing the entropy functional H ¼ qu2=2þ E and then setting the state vector as the partial with respect to
the conservation variables W ¼ HU . The difficulty of implementation of these energy schemes, which are inherently implicit
methods, underscores the importance of conserving energy consistency of the solution, and further serves as motivation for
testing how our explicit scheme behaves with respect to (44) and (45).

Here we inspect the entropy consistency of our scheme with respect to (44) and (45) using the ‘ ¼ 5 fluid with periodic
boundary data as shown in Section 6. From the numerical perspective, we expect our solution (19) to obey entropy consis-
tency up to a restriction of the CFL stability condition, which for inviscid flows scale as eC1h=SpecrC P Dt and for the com-
plementary viscous flows like eC2h2

=maxðm;1ÞP Dt, where the CFL constants are characterized by eC1; eC2 2 ð0;1Þ. We note
that we do not expect energy consistency for an arbitrary choice of boundary data.

To examine whether the two inequalities (44) and (45) are satisfied, we first define ~H ¼ 1
2 qjuþ q�1@xwj2 þ E, and check

that the spacetime integrated functionals for our numerical solution satisfy:
ST ¼
Z

X
HT dxþ

Z T

0

Z
X
mjuxj2dxdt 6

Z
X
H0dx ð46Þ
Here we plot the integral forms ST and ~ST for C ¼ 1 and a ¼ 0:9, where
R

X H0dx and
R

X
~H0dx are represented by the first timestep. The spatial mesh is

with ne ¼ 100 with Dt ¼ 0:01.
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and
Fig. 7.
interste
represe
H2 	 8
~ST ¼
Z

X

~HT dxþ
Z T

0

Z
X
q�1w0jpxj

2dxdt 6
Z

X

~H0dx: ð47Þ
We show the results of this calculation for an arbitrarily chosen set of parameters in Fig. 6. As is clear from the graph, both
(46) and (47) are satisfied. In fact we have confirmed that (19) satisfies (46) and (47) whenever the CFL condition is satisfied,
up to the choice of a constant. It is interesting to note that both of these inequalities are satisfied for an arbitrary choice of a
and C in the numerical setting. This confirms that the mathematical result from Ref. [39] is substantially more restrictive
than the numerical one.

As a side remark, the functional behavior of the viscosity is a relatively unique property of our system (1)–(3), which is to
say that commonly compressible Navier–Stokes systems utilize constant viscosity coefficients (eg. see Ref. [22] chapter 4)
and thus the energy consistency and the CFL condition is not dynamically coupled to the solution components. However,
for our system, since the viscosity is a function of time, the CFL condition must update to reflect the local viscosity magnitude
at each timestep.

8. Fick’s diffusion with acoustic BCs

Although Theorem 2.1 only applies to systems of the form (1)–(3), the particular numerical scheme outlined in Section 2
can be easily extended to more complicated systems; and indeed can be extended with similar numerical behaviors. As an
example let us consider the 5-fluid,
qt þ ðquÞx ¼ 0; ð48Þ
ðquÞt þ ðqu2Þx þ px � ðmuxÞx ¼ 0; ð49Þ
ðqliÞt þ ðquliÞx � ðqDili;xÞx ¼ 0; ð50Þ
with initial conditions:
qjt¼0 ¼ q0 > 0; qujt¼0 ¼ m0; and ðqliÞjt¼0 ¼ qi;0
given (41) and (42) and Di the diffusivity constants of each respective species. Here the system is equivalent to that in Sec-
tion 6, except we have added the Fick’s diffusion law term to the advection equation in l. Thus the state vector and inviscid
flux remain unchanged, while the vector g becomes
gðU;UxÞ ¼ ð0; mux;qD1l1; . . . ;qD‘l‘Þ
T
; ð51Þ
such that the corresponding viscous flux matrix yields K ¼ @Ux g.
We set an acoustic inlet condition, which is equivalent to identifying the sound pressure on @X. We suppose that the pres-

sure on the boundary is a classical time-harmonic solution to the acoustic wave equation, namely, pb ¼ p0 þ A0 sinðxtÞ for a
driving amplitude A0, an ambient reference pressure p0 ¼

P‘
i ðq0li;0Þ

ci , and an angular frequency x.
Here we have solved (48)–(50) using a formulation which is meant to weakly mimic some of the conditions found in

interstellar nurseries, or interstellar molecular clouds. The solution is shown in Fig. 7, where it is notable that the traveling
A weak entropy solution to an oscillating pressure front propagating through a 5-component low density (	 100 molecules per cm as known in
llar molecular clouds) gas at # = 20 K. The chemical constituents are comprised of species found in dark interstellar molecular clouds, where
ntative fractional abundances are adopted and the solution space is appropriately scaled; with corresponding initial conditions:
0%;He 	 19:9%, and trace CO;H (atomic hydrogen), and HC3N (cyanoacetylene).



Fig. 8. A characteristic solution to the same oscillating pressure front presented in 7.

Fig. 9. Here we plot the relative difference between the weak entropy pressure pw and the characteristic pressure pc .
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sound field pb dynamically responds to the changing speed of sound c throughout the medium – which scales like the root of
the local change in pressure up to the local species concentration. The initial conditions and the diffusivities were estimated
with the help of Ref. [36,45].

For the case of weak entropy conditions, we set the lag velocity condition un
b jKji
¼ un�1

b jKij
and determine the boundary val-

ues of the li from their initial concentrations on @X. Since in the barotropic case the total pressure satisfies pb ¼
P‘

i q
ci
i , we

then use the Newton–Raphson method to solve for roots in qb of the following equation:
X‘
i

ðqbli;bÞ
ci � ðp0 þ A0 sinðxtÞÞ ¼ 0: ð52Þ
This determines the values of q on the boundary, where A0 < p0 is the natural positivity constraint on the pressure inlet. We
allow antisymmetric inlets (here just meaning values on either boundary have the same magnitude with opposite direction)
on @X ¼ fa; bg leading to the formation of supernodes within the fluid domain. With our boundary data defined, we utilize
the definition: Un

hjKji
¼ fqbðtnÞ;mbðtnÞ;q1;bðtnÞ;q2;bðtnÞ;q3;bðtnÞ;q4;bðtnÞ;q5;bðtnÞg. The solution is plotted in Fig. 7 for the do-

main ð0;54Þ, a mesh size of h ¼ 0:135, a timestep size of h=30, and the Runge–Kutta method of order k ¼ 2.
By comparison we solve the characteristic acoustic inlet boundary solution using the formalism presented in Section 3. As

in Section 4 we linearize about the state Un
hjKij

to arrive at an expression for the boundary state Un
hjKji

at timestep tn. Now, to
determine well-posed characteristic boundary data we must dynamically switch between the five regimes (up to a choice of
membrane condition for u � n ¼ 0) listed in Table 1, since the pressure oscillation pulls the velocity between transonic inlet
and outlet conditions. That is, we switch between the following cases:

� Subsonic inlet: bn
1 is fixed by V�1~qb, while bn

2; . . . ; bn
7 are given by the equations li;b ¼ li;0, and

P‘
i ðqbli;bÞ

ci � ðp0þ
A0 sinðxtÞÞ ¼ 0.
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� Supersonic inlet: bn
1; . . . ; bn

7 are given by the equations li;b ¼ li;0;u
n
b ¼ un�1

b , and
P‘

i ðqbli;bÞ
ci � ðp0 þ A0 sinðxtÞÞ ¼ 0.

� Subsonic outlet: bn
1; b

n
3; . . . ; bn

7 are fixed by V�1~qb, and we solve for bn
2 by way of the pressure equation

P‘
i ðqbli;bðb

n
2ÞÞ

ci�
ðp0 þ A0 sinðxtÞÞ ¼ 0.

� Supersonic outlet: bn
1; b

n
2; . . . ; bn

7 are fixed by V�1~qb.
� Wall: bn

1; b
n
3; . . . ; bn

7 are fixed by V�1~qb, and we solve bn
2 by way of the pressure equation

P‘
i ðqbli;bðb

n
2ÞÞ

ci�
ðp0 þ A0 sinðxtÞÞ ¼ 0,

where we note that above we have set ~qb ¼ Un
hjKji

.
It can be confirmed by inspection of Figs. 7 and 8 that the characteristic solution demonstrates substantially sharper pro-

files than the analogous profiles in the weak entropy solution, and these peaks decay more rapidly in time. To show this more
clearly, we display the difference graph in Fig. 9. It is not clear a priori which solution is more phenomenologically predictive.
9. Conclusion

We have shown an efficient and robust high-order numerical scheme for a mixing compressible barotropic viscous fluid
comprised of up to ‘ distinct chemical constituents. The DG solution was shown to be in very good agreement with two exact
solutions derived by a choice of initial conditions, which demonstrate minimal numerical error at the weak entropy bound-
aries, as expected. The solution was then shown for two time-explicit schemes, the forward Euler and k-th order explicit
Runge–Kutta schemes. Analysis of the method demonstrated the expected conditional stability up to a restriction by the
CFL condition, and we further found that the numerical scheme up to this stability parameter is energy consistent, satisfying
a novel entropy inequality; and that the energy consistency holds for a large family of physically relevant problems. We fur-
ther provide a family of free boundary type solutions which are easily implemented, and which are numerically well-be-
haved, where either weak entropy or characteristic treatments are employed for comparative studies, and it is seen that
indeed they demonstrate distinctly different behaviors even given (seemingly) equivalent initial data.

A number of examples and potential physical applications were shown and cited in order to develop a sense of the large
number of applications in chemistry, physics, engineering, and related fields.

Future directions of the work include the expansion to higher spatial dimensions (2 and 3 dimensional meshes), the inclu-
sion of Arrhenius type chemical equations to (3), the inclusion of temperature # dependence into the model, the addition of
fluid–structure interfaces, and the expansion of the modelisation to include ionic and polar species as well as dense plasmas
(magnetohydrodynamic effects), surface tension and gravitational effects.
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Appendix A. We have that C is of the form
where for i ¼ 1; . . . ; ‘ we set Zi ¼ @qi
p. Solving the characteristic equation detðC� I1Þ ¼ 0, the eigenvalues counted with mul-

tiplicity are,
11 ¼ uþ c; 12 ¼ u� c; 13 ¼ u; 14 ¼ u; . . . ; 1‘þ2 ¼ u|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}‘�1;
where c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l1Z1 þ � � � þ l‘Z‘

p
. While u has multiplicity ‘ it is better to consider the eigenvalues in the three groups, u
 c; u,

and the remaining ð‘� 1Þ copies of u as illustrated by the decomposition of the diagonalizing transformation matrix
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VðUÞ ¼ ðc1 � � � c‘Þ ¼

1 1 1 0 � � � � � � 0
uþ c u� c u 0 � � � � � � 0
l1 l1 0 �Z2 � � � � � � �Z‘
l2 l2 0 Z1 0 � � � 0

..

. ..
. ..

.
0 . .

. . .
. ..

.

..

. ..
. ..

. ..
. . .

. . .
.

0
l‘ l‘ 0 0 . . . 0 Z1

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA
;

whose columns are the corresponding eigenvectors, which we abbreviate for convenience in the 3� 3 block matrix form
where we have set X ¼ ðl2; . . . ;l‘Þ
T and Y ¼ ðZ2; . . . ; Z‘Þ.

The inverse transformation matrix is given by
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